What test methods and other procedures must I use to demonstrate initial compliance with the emission limits for particulate matter?

Checkout our iOS App for a better way to browser and research.

§ 63.7822 What test methods and other procedures must I use to demonstrate initial compliance with the emission limits for particulate matter?

(a) On or before January 11, 2021, for each existing source, and for each new or reconstructed source for which construction or reconstruction commenced on or before August 16, 2019, you must conduct each performance test that applies to your affected source based on representative performance (i.e., performance based on normal operating conditions) of the affected source for the period being tested, according to the conditions detailed in paragraphs (b) through (i) of this section. After January 11, 2021 for each such source, and after July 13, 2020 for new and reconstructed sources for which construction or reconstruction commenced after August 16, 2019, you must conduct each performance test under conditions representative of normal operations. The owner or operator must record the process information that is necessary to document operating conditions during the test and include in such record an explanation to support that such conditions represent normal operation. Upon request, the owner or operator shall make available to the Administrator such records as may be necessary to determine the conditions of performance tests. Representative conditions exclude periods of startup and shutdown. You shall not conduct performance tests during periods of malfunction. You must record the process information that is necessary to document operating conditions during the test and include in such record an explanation to support that such conditions represent normal operation. Upon request, you shall make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

(b) To determine compliance with the applicable emission limit for particulate matter in Table 1 to this subpart, follow the test methods and procedures in paragraphs (b)(1) and (2) of this section.

(1) Determine the concentration of particulate matter according to the following test methods:

(i) EPA Method 1 in appendix A-1 to part 60 of this chapter to select sampling port locations and the number of traverse points. Sampling ports must be located at the outlet of the control device and prior to any releases to the atmosphere.

(ii) EPA Method 2 or 2F in appendix A-1 to part 60 of this chapter or EPA Method 2G in appendix A-2 to part 60 of this chapter to determine the volumetric flow rate of the stack gas.

(iii) EPA Method 3, 3A, or 3B in appendix A-2 to part 60 of this chapter to determine the dry molecular weight of the stack gas. The manual procedures (but not instrumental procedures) of voluntary consensus standard ANSI/ASME PTC 19.10-1981 - Part 10 (incorporated by reference - see § 63.14) may be used as an alternative to EPA Method 3B.

(iv) EPA Method 4 in appendix A-3 to part 60 of this chapter to determine the moisture content of the stack gas.

(v) EPA Method 5 or 5D in appendix A-3 to part 60 of this chapter or EPA Method 17 in appendix A-6 to part 60 of this chapter, as applicable, to determine the concentration of particulate matter (front half filterable catch only).

(2) Collect a minimum sample volume of 60 dry standard cubic feet (dscf) of gas during each particulate matter test run. Three valid test runs are needed to comprise a performance test.

(c) For each sinter plant windbox exhaust stream, you must complete the requirements of paragraphs (c)(1) and (2) of this section:

(1) Follow the procedures in your operation and maintenance plan for measuring and recording the sinter production rate for each test run in tons per hour; and

(2) Compute the process-weighted mass emissions (Ep) for each test run using Equation 1 of this section as follows:

Where:

Ep = Process-weighted mass emissions of particulate matter, lb/ton;

C = Concentration of particulate matter, grains per dry standard cubic foot (gr/dscf);

Q = Volumetric flow rate of stack gas, dry standard cubic foot per hour (dscf/hr);

P = Production rate of sinter during the test run, tons/hr; and

K = Conversion factor, 7,000 grains per pound (gr/lb).

(d) If you apply two or more control devices in parallel to emissions from a sinter plant discharge end or a BOPF, compute the average flow-weighted concentration for each test run using Equation 2 of this section as follows:

Where:

Cw = Flow-weighted concentration, gr/dscf;

Ci = Concentration of particulate matter from exhaust stream “i”, gr/dscf; and

Qi = Volumetric flow rate of effluent gas from exhaust stream “i”, dry standard cubic foot per minute (dscfm).

(e) For a control device applied to emissions from a blast furnace casthouse, sample for an integral number of furnace tapping operations sufficient to obtain at least 1 hour of sampling for each test run.

(f) For a primary emission control device applied to emissions from a BOPF with a closed hood system, sample only during the primary oxygen blow and do not sample during any subsequent reblows. Continue sampling for each run for an integral number of primary oxygen blows.

(g) For a primary emission control system applied to emissions from a BOPF with an open hood system and for a control device applied solely to secondary emissions from a BOPF, you must complete the requirements of paragraphs (g)(1) and (2) of this section:

(1) Sample only during the steel production cycle. Conduct sampling under conditions that are representative of normal operation. Record the start and end time of each steel production cycle and each period of abnormal operation; and

(2) Sample for an integral number of steel production cycles. The steel production cycle begins when the scrap is charged to the furnace and ends 3 minutes after the slag is emptied from the vessel into the slag pot.

(h) For a control device applied to emissions from BOPF shop ancillary operations (hot metal transfer, skimming, desulfurization, or ladle metallurgy), sample only when the operation(s) is being conducted.

(i) Subject to approval by the permitting authority, you may conduct representative sampling of stacks when there are more than three stacks associated with a process.

[68 FR 27663, May 20, 2003, as amended at 85 FR 42116, July 13, 2020]


Download our app to see the most-to-date content.