Analytical requirements.

Checkout our iOS App for a better way to browser and research.

§ 141.131 Analytical requirements.

(a) General.

(1) Systems must use only the analytical methods specified in this section, or their equivalent as approved by EPA, to demonstrate compliance with the requirements of this subpart and with the requirements of subparts U and V of this part. These methods are effective for compliance monitoring February 16, 1999, unless a different effective date is specified in this section or by the State.

(2) The following documents are incorporated by reference. The Director of the Federal Register approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be inspected at EPA's Drinking Water Docket, 1301 Constitution Avenue, NW., EPA West, Room B102, Washington, DC 20460, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. EPA Method 552.1 is in Methods for the Determination of Organic Compounds in Drinking Water-Supplement II, USEPA, August 1992, EPA/600/R-92/129 (available through National Information Technical Service (NTIS), PB92-207703). EPA Methods 502.2, 524.2, 551.1, and 552.2 are in Methods for the Determination of Organic Compounds in Drinking Water-Supplement III, USEPA, August 1995, EPA/600/R-95/131 (available through NTIS, PB95-261616). EPA Method 300.0 is in Methods for the Determination of Inorganic Substances in Environmental Samples, USEPA, August 1993, EPA/600/R-93/100 (available through NTIS, PB94-121811). EPA Methods 300.1 and 321.8 are in Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, Volume 1, USEPA, August 2000, EPA 815-R-00-014 (available through NTIS, PB2000-106981). EPA Method 317.0, Revision 2.0, “Determination of Inorganic Oxyhalide Disinfection By-Products in Drinking Water Using Ion Chromatography with the Addition of a Postcolumn Reagent for Trace Bromate Analysis,” USEPA, July 2001, EPA 815-B-01-001, EPA Method 326.0, Revision 1.0, “Determination of Inorganic Oxyhalide Disinfection By-Products in Drinking Water Using Ion Chromatography Incorporating the Addition of a Suppressor Acidified Postcolumn Reagent for Trace Bromate Analysis,” USEPA, June 2002, EPA 815-R-03-007, EPA Method 327.0, Revision 1.1, “Determination of Chlorine Dioxide and Chlorite Ion in Drinking Water Using Lissamine Green B and Horseradish Peroxidase with Detection by Visible Spectrophotometry,” USEPA, May 2005, EPA 815-R-05-008 and EPA Method 552.3, Revision 1.0, “Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection,” USEPA, July 2003, EPA-815-B-03-002 can be accessed and downloaded directly on-line at http://www.epa.gov/safewater/methods/sourcalt.html. EPA Method 415.3, Revision 1.1, “Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water,” USEPA, February 2005, EPA/600/R-05/055 can be accessed and downloaded directly on-line at www.epa.gov/nerlcwww/ordmeth.htm. Standard Methods 4500-Cl D, 4500-Cl E, 4500-Cl F, 4500-Cl G, 4500-Cl H, 500-Cl I, 4500-ClO2 D, 4500-ClO2 E, 6251 B, and 5910 B shall be followed in accordance with Standard Methods for the Examination of Water and Wastewater, 19th or 20th Editions, American Public Health Association, 1995 and 1998, respectively. The cited methods published in either edition may be used. Standard Methods 5310 B, 5310 C, and 5310 D shall be followed in accordance with the Supplement to the 19th Edition of Standard Methods for the Examination of Water and Wastewater, or the Standard Methods for the Examination of Water and Wastewater, 20th Edition, American Public Health Association, 1996 and 1998, respectively. The cited methods published in either edition may be used. Copies may be obtained from the American Public Health Association, 1015 Fifteenth Street, NW., Washington, DC 20005. Standard Methods 4500-Cl D-00, 4500-Cl E-00, 4500-Cl F-00, 4500-Cl G-00, 4500-Cl H-00, 4500-Cl I-00, 4500-ClO2 E-00, 6251 B-94, 5310 B-00, 5310 C-00, 5310 D-00 and 5910 B-00 are available at http://www.standardmethods.org or at EPA's Water Docket. The year in which each method was approved by the Standard Methods Committee is designated by the last two digits in the method number. The methods listed are the only Online versions that are IBR-approved. ASTM Methods D 1253-86 and D 1253-86 (Reapproved 1996) shall be followed in accordance with the Annual Book of ASTM Standards, Volume 11.01, American Society for Testing and Materials International, 1996 or any ASTM edition containing the IBR-approved version of the method may be used. ASTM Method D1253-03 shall be followed in accordance with the Annual Book of ASTM Standards, Volume 11.01, American Society for Testing and Materials International, 2004 or any ASTM edition containing the IBR-approved version of the method may be used. ASTM Method D 6581-00 shall be followed in accordance with the Annual Book of ASTM Standards, Volume 11.01, American Society for Testing and Materials International, 2001 or any ASTM edition containing the IBR-approved version of the method may be used; copies may be obtained from the American Society for Testing and Materials International, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.

(b) Disinfection byproducts.

(1) Systems must measure disinfection byproducts by the methods (as modified by the footnotes) listed in the following table or one of the alternative methods listed in appendix A to subpart C of this part:

Expand Table

Approved Methods for Disinfection Byproduct Compliance Monitoring

Contaminant and methodology1 EPA method Standard method2 SM online9 ASTM method3
TTHM
P&T/GC/ElCD & PID 502.24
P&T/GC/MS 524.2
LLE/GC/ECD 551.1
HAA5
LLE (diazomethane)/GC/ECD 6251 B5 6251 B-94
SPE (acidic methanol)/GC/ECD 552.15
LLE (acidic methanol)/GC/ECD 552.2, 552.3
Bromate
Ion chromatography 300.1 D 6581-00
Ion chromatography & post column reaction 317.0 Rev 2.06, 326.06
IC/ICP-MS 321.86 7
Chlorite
Amperometric titration 4500-ClO2 E8 4500-ClO2 E-008
Spectrophotometry 327.0 Rev 1.18
Ion chromatography 300.0, 300.1, 317.0 Rev 2.0, 326.0 D 6581-00

(2) Analyses under this section for disinfection byproducts must be conducted by laboratories that have received certification by EPA or the State, except as specified under paragraph (b)(3) of this section. To receive certification to conduct analyses for the DBP contaminants in §§ 141.64, 141.135, and subparts U and V of this part, the laboratory must:

(i) Analyze Performance Evaluation (PE) samples that are acceptable to EPA or the State at least once during each consecutive 12 month period by each method for which the laboratory desires certification.

(ii) Until March 31, 2007, in these analyses of PE samples, the laboratory must achieve quantitative results within the acceptance limit on a minimum of 80% of the analytes included in each PE sample. The acceptance limit is defined as the 95% confidence interval calculated around the mean of the PE study between a maximum and minimum acceptance limit of ±50% and ±15% of the study mean.

(iii) Beginning April 1, 2007, the laboratory must achieve quantitative results on the PE sample analyses that are within the following acceptance limits:

Expand Table
DBP Acceptance limits (percent of true value) Comments
TTHM
Chloroform ±20 Laboratory must meet all 4 individual THM acceptance limits in order to successfully pass a PE sample for TTHM
Bromodichloromethane ±20
Dibromochloromethane ±20
Bromoform ±20
HAA5
Monochloroacetic Acid ±40 Laboratory must meet the acceptance limits for 4 out of 5 of the HAA5 compounds in order to successfully pass a PE sample for HAA5
Dichloroacetic Acid ±40
Trichloroacetic Acid ±40
Monobromoacetic Acid ±40
Dibromoacetic Acid ±40
Chlorite ±30
Bromate ±30

(iv) Beginning April 1, 2007, report quantitative data for concentrations at least as low as the ones listed in the following table for all DBP samples analyzed for compliance with §§ 141.64, 141.135, and subparts U and V of this part:

Expand Table
DBP Minimum reporting level (mg/L)1 Comments
TTHM2
Chloroform 0.0010
Bromodichloromethane 0.0010
Dibromochloromethane 0.0010
Bromoform 0.0010
HAA52
Monochloroacetic Acid 0.0020
Dichloroacetic Acid 0.0010
Trichloroacetic Acid 0.0010
Monobromoacetic Acid 0.0010
Dibromoacetic Acid 0.0010
Chlorite 0.020 Applicable to monitoring as prescribed in § 141.132(b)(2)(1)(B) and (b)(2)(ii).
Bromate 0.0050 or 0.0010 Laboratories that use EPA Methods 317.0 Revision 2.0, 326.0 or 321.8 must meet a 0.0010 mg/L MRL for bromate.

(3) A party approved by EPA or the State must measure daily chlorite samples at the entrance to the distribution system.

(c) Disinfectant residuals.

(1) Systems must measure residual disinfectant concentration for free chlorine, combined chlorine (chloramines), and chlorine dioxide by the methods listed in the following table or one of the alternative methods listed in appendix A to subpart C of this part:

Expand Table
Methodology SM (19th or 20th ed) SM
Online2
ASTM
method
EPA
method
Residual measured1
Free
Cl2
Combined
Cl2
Total
Cl2
ClO2
Amperometric Titration 4500-Cl D 4500-Cl D-00 D 1253-86 (96), 03 X X X
Low Level Amperometric Titration 4500-Cl E 4500-Cl E-00 X
DPD Ferrous Titrimetric 4500-Cl F 4500-Cl F-00 X X X
DPD Colorimetric 4500-Cl G 4500-Cl G-00 X X X
Syringaldazine (FACTS) 4500-Cl H 4500-Cl H-00 X
Iodometric Electrode 4500-Cl I 4500-Cl I-00 X
DPD 4500-ClO2 D X
Amperometric Method II 4500-ClO2 E 4500-ClO2 E-00 X
Lissamine Green Spectrophotometric 327.0 Rev 1.1 X

(2) If approved by the State, systems may also measure residual disinfectant concentrations for chlorine, chloramines, and chlorine dioxide by using DPD colorimetric test kits.

(3) A party approved by EPA or the State must measure residual disinfectant concentration.

(d) Additional analytical methods. Systems required to analyze parameters not included in paragraphs (b) and (c) of this section must use the following methods or one of the alternative methods listed in appendix A to subpart C of this part. A party approved by EPA or the State must measure these parameters.

(1) Alkalinity. All methods allowed in § 141.89(a) for measuring alkalinity.

(2) Bromide. EPA Methods 300.0, 300.1, 317.0 Revision 2.0, 326.0, or ASTM D 6581-00.

(3) Total Organic Carbon (TOC). Standard Method 5310 B or 5310 B-00 (High-Temperature Combustion Method) or Standard Method 5310 C or 5310 C-00 (Persulfate-Ultraviolet or Heated-Persulfate Oxidation Method) or Standard Method 5310 D or 5310 D-00 (Wet-Oxidation Method) or EPA Method 415.3 Revision 1.1. Inorganic carbon must be removed from the samples prior to analysis. TOC samples may not be filtered prior to analysis. TOC samples must be acidified at the time of sample collection to achieve pH less than or equal to 2 with minimal addition of the acid specified in the method or by the instrument manufacturer. Acidified TOC samples must be analyzed within 28 days.

(4) Specific Ultraviolet Absorbance (SUVA). SUVA is equal to the UV absorption at 254nm (UV254) (measured in m-1 divided by the dissolved organic carbon (DOC) concentration (measured as mg/L). In order to determine SUVA, it is necessary to separately measure UV254 and DOC. When determining SUVA, systems must use the methods stipulated in paragraph (d)(4)(i) of this section to measure DOC and the method stipulated in paragraph (d)(4)(ii) of this section to measure UV254. SUVA must be determined on water prior to the addition of disinfectants/oxidants by the system. DOC and UV254 samples used to determine a SUVA value must be taken at the same time and at the same location.

(i) Dissolved Organic Carbon (DOC). Standard Method 5310 B or 5310 B-00 (High-Temperature Combustion Method) or Standard Method 5310 C or 5310 C-00 (Persulfate-Ultraviolet or Heated-Persulfate Oxidation Method) or Standard Method 5310 D or 5310 D-00 (Wet-Oxidation Method) or EPA Method 415.3 Revision 1.1. DOC samples must be filtered through the 0.45 μm pore-diameter filter as soon as practical after sampling, not to exceed 48 hours. After filtration, DOC samples must be acidified to achieve pH less than or equal to 2 with minimal addition of the acid specified in the method or by the instrument manufacturer. Acidified DOC samples must be analyzed within 28 days of sample collection. Inorganic carbon must be removed from the samples prior to analysis. Water passed through the filter prior to filtration of the sample must serve as the filtered blank. This filtered blank must be analyzed using procedures identical to those used for analysis of the samples and must meet the following criteria: DOC <0.5 mg/L.

(ii) Ultraviolet Absorption at 254 nm (UV254). Standard Method 5910 B or 5910 B-00 (Ultraviolet Absorption Method) or EPA Method 415.3 Revision 1.1. UV absorption must be measured at 253.7 nm (may be rounded off to 254 nm). Prior to analysis, UV254 samples must be filtered through a 0.45 μm pore-diameter filter. The pH of UV254 samples may not be adjusted. Samples must be analyzed as soon as practical after sampling, not to exceed 48 hours.

(5) pH. All methods allowed in § 141.23(k)(1) for measuring pH.

(6) Magnesium. All methods allowed in § 141.23(k)(1) for measuring magnesium.

[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001; 71 FR 479, Jan. 4, 2006; 71 FR 37168, June 29, 2006; 74 FR 30958, June 29, 2009]


Download our app to see the most-to-date content.